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Tunnel transitions, vacuum background and scattering 
processes in quantum electrodynamics? 
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Pobedy, 37, Kiev, 252056, USSR 

Received 29 Feburary 1984, in final form 11 February 1985 

Abstract. It is shown that in external fields there may occur an excitation (deformation) 
of the vacuum state of the electron-positron system which is not accompanied by the 
processes of real electron-positron pair creation. In the case of the excited vacuum the 
wavefunctions of the vacuum electrons have both negative-frequency and positive- 
frequency components. The true meaning of the Klein mechanism of vacuum polarisation 
is that the ‘bare’ electron states are ‘dressed’ by the applied field and as a result the vacuum 
passes from the ground state to an excited one without creating real pairs. From the real 
pair creation criterion obtained it is inferred that no real pairs can be created by an arbitrary 
static field. It follows from the results presented that induced emission of the excited 
vacuum background is possible, i.e. transitions of the collective vacuum vibrations to the 
single quasi-particle states may occur. Deformation of the vacuum cannot be correctly 
taken into account within S-matrix scattering theory because in the latter this process is 
always interpeted as real pair creation. 

1. Introduction 

The main conclusion arrived at in this paper is that under the influence of an external 
field acting on the electron-positron system there takes place a restructuring (deforma- 
tion) of its vacuum state not accompanied by the creation of real electron-positron 
pairs. The energy of the external field can be accumulated by vacuum vibrations, the 
vacuum going over to an excited state whose energy is greater than that of the ground 
vacuum state. The structure of the excited vacuum is defined by the value of the 
applied field strength. The excited vacuum background (by which we mean a medium 
consisting of virtual particles) may return to the ground state by emitting the surplus 
energy in the form of real photons and electron-positron pairs. Thw, one can formulate 
the fundamental problems of vacuum background pumping and stimulated emission 
of the excited vacuum state which are also of interest from the experimental viewpoint. 

The deformation of the vacuum is closely connected with the restructuring of the 
energy spectrum of elementary excitations of a system which may be very large, 
especially in sufficiently strong external fields or in various resonance situations (Oleinik 
1971, Belousov and Oleinik 1979). The energy of the external field goes into redistribu- 
tion of the vacuum charges, accompanied by realignment of the energy spectrum, and 
it may be borrowed from the field not only in the form of an integral number of quanta 

t The main ideas of the present paper were briefly outlined in Oleinik and Belousov (1983) and Oleinik 
(1983, 1984). 
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bat also continuously, in proportion to the intensity of the field. The energy spectrum 
deformation caused by virtual processes of ‘dressing’ the ‘bare’ states is responsible 
for many interesting physical effects (Oleinik 1971). 

The results of this paper follow necessarily from comparing the Klein mechanism 
of vacuum polarisation in an external field with the mechanism of real pair creation 
predicted by Oleinik and Belousov (1983) and Oleinik and Arepjev (1984b). The latter 
mechanism is due to the appearance of quasi-stationary elementary excitations of the 
electron-positron system. It cannot be described within the S-matrix theory of quantum 
transitions. 

A study of tunnel transitions and vacuum polarisation in an external field and also 
of the unitarity condition for the S operator and energy balance equations for quantised 
fields made in this paper reveals that S-matrix theory does not always describe correctly 
the processes of electron-positron pair creation and of emission and absorption of 
photons in the external field. This is due to the fact that in conventional scattering 
theory any deformation of the vacuum background is interpreted as the creation or 
absorption of real observable particles, whereas in actual fact the vacuum may be 
caused by an applied field to pass into such an excited state in which no real particles 
are present. 

The result of the time evolution of the initial state 1 n )  is usually written in the form 
of the following superposition: 

where the matrix element (ml SI n )  is interpreted as the probability amplitude for 
transition of a system from the state In) to the state Im). According to the results 
obtained, in some cases the expansion ( 1 )  has a purely formal character and its 
coefficients ( m ( S ( n )  cannot be interpreted as the probability amplitudes for real quan- 
tum processes. The main point is that the ket-vectors 1 m) in ( 1 )  describe not only the 
real particles but also the virtual particles making up the vacuum background of 
quantised fields. It should be emphasised that the vacuum deformation caused by an 
applied field need not be accompanied by real physical processes. 

In view of the existence of the vacuum background, which is in a sense similar in 
its physical properties to an elastic medium, the conventional interpretation of the S 
matrix is not always in agreement with the correspondence principle of quantum 
mechanics. In this paper a simple model is given in which S-matrix theory predicts 
the possibility of emission of a photon by an electron whereas, by the correspondence 
principle, the emission or absorption processes of real photons by electrons cannot 
take place. 

In 0 2 attention is drawn to the existence of two types of tunnelling transitions 
occurring under the action of an external field. This is necessary for a more complete 
understanding of the true nature of the Klein mechanism of vacuum polarisation. In 
§ 3 the interrelationship is established between the mechanism of real electron-positron 
pair production predicted in Oleinik and Belousov (1983) and the Klein mechanism 
of the vacuum polarisation. Here the conclusion is drawn that the vacuum of quantised 
fields may be in an excited state and the criterion for real pair production in an external 
field is derived. The unitarity condition for the S matrix is examined in § 4. In 0 5 an 
analysis is made of the energy balance equations for the interacting fields and of the 
conditions under which the transition probability concept may be defined. The main 
conclusions arrived at in this paper are summarised in 0 6 .  
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2. Two types of tunnel transitions 

According to Blokhintsev (1961) and Oleinik and Belousov (1983) there are two types 
of electron tunnelling transitions through a potential barrier which differ considerably 
from one another in their physical characteristics: transitions of free electrons and of 
electrons localised in a potential well. 

First, we consider the tunnelling transitions of free electrons moving towards the 
potential barrier from infinity (from now on they will be referred to as transitions of 
the first type). Let j ,  be an incident flux of electrons with energy E ( E  < V,, where 
Vo is the height of the one-dimensional square potential barrier). As the electron states 
with E < V, are doubly degenerate, one can always construct such a state which gives 
the non-vanishing incident flux ( j ,  # 0). The flux j in the electron wave penetrating 
the barrier is defined by the transmission coefficient D: j = Dj,. This type of tunnelling 
is a stationary process which is characterised by the absence of any sources or sinks 
of the current density of particles j = j ( r ,  t) :  div j = 0. 

Now we turn to tunnelling transitions of the second type-penetration of a barrier 
by electrons initially localised in the potential well region (see the region ( -L ,  0) in 
figure 1( a)). In this case the electron states with energy E ( E  < V,) are non-degenerate. 
As the quantities j o  and j are both equal to zero, the transmission coefficient D makes 
no sense. The electron tunnelling transitions out of the potential well cannot be 
described within the consistent stationary quantum mechanical theory. 

I V  I" 

Figure 1. The potential well and the barrier. 

In order to explain the second type of tunnelling the outgoing-wave boundary 
condition is imposed on the solution IC, of the Schrodinger equation for stationary 
states. This condition consists of the requirement that there be only outgoing waves 
far away from the barrier. With the potential energy curve depicted in figure l (a ) ,  the 
outgoing-wave boundary condition is of the form 

IC, = exp(ikz) a t z > d  ( k =  (2mE)"2) .  

The Schrodinger equation has a solution satisfying the above condition only at 
imaginary values of energy: E = E' - iT ( E '  = Re E, r > 0), the solution being exponen- 
tially divergent at z + +m. For this reason the stationary theory of the second type of 
tunnelling is not a correct quantum mechanical theory. 

In view of the non-stationary character of the second type of tunnelling it should 
be described in terms of the wavefunction satisfying the time-dependent Schrodinger 
equation and an initial condition. Such an approach was developed by Drukarjev 
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(1951) when considering a particle transfer out of the potential well in the short-range 
potential case. In its application to the problem of a particle tunnelling out of the 
well under the influence of an electric field $, this approach is as follows (Oleinik and 
Belousov 1983, Oleinik and Arepjev 1984a). Assume that prior to the moment t = 0 a 
particle was located in a well and described by the wavefunction ( ~ ~ ( 2 ,  t )  with energy 
E. Then at t = 0 the electric field 8 is switched on in the half-plane z > 0 (see figure 
l (b)) .  The tunnel current density of electrons is given by 

1 
&(z ,  t )  = g + d z ,  t ) X + * E ( s  t )  

where (CIE(z, t )  is the solution of the time-dependent Schrodinger equation in the 
potential well and in the field 8 satisfying the initial condition + € ( z ,  0) = (oE(z,  0). 
Within a certain time interval and for t - az”*> 0, z > 0 the smoothly varying time 
component of the current j E  ( 2 ,  t )  is of the form 

where a ( a  > 0) and c, are constant coefficients, r, is the width of a quasi-stationary 
state formed in the well and the symbol 2, means the sum over all quasi-stationary 
states. As is seen from (2), the second type of tunnelling is a decay of the bound 
stationary state of an electron under the influence of an electric field, the magnitude 
of the tunnel current being defined by the width rn of quasi-stationary states. The 
particle flux emerging from the well of volume V is given by jv d iv j  dr. Therefore, 
the inequality d iv j  > 0 should be regarded as the necessary condition for the second 
type of tunnelling to occur. 

It is clear from what has been said above that the first type of tunnelling is merely 
a free particle travelling from one spatial region to another one separated by a potential 
barrier. The second type of tunnelling is a different kind of process: it is a particle 
escaping from a certain region when there is no particle flux entering it. 

3. Vacuum polarisation and pair creation 

The conclusion above that there exist two different types of tunnelling is especially 
important when investigating the interband transitions (Klein 1929, Sauter 1931, Zener 
1934, Schwinger 1951). In accordance with conventional theory the electron-positron 
pair creation in an electric field is a tunnelling penetration of an electron from the 
completely filled lower band (from the Dirac sea) into the upper one through the 
forbidden range. When considering the pair creation problem from the qualitative 
point of view, this process is usually described in terms of the transmission coefficient 
D evaluated for the negative-energy electron, with the forbidden band regarded as a 
potential barrier. In other words, the pair creation in an electric field is assumed to 
be the first type of tunnelling. The production of pairs in an electric field cannot be, 
however, a tunnel transition of the first type because in the lower band there is no flux 
of free particles falling on the potential barrier (on the forbidden band). Due to the 
fact that all the states in the lower band are filled by negative-energy electrons in 
accordance with the Pauli exclusion principle, the lower band is analogous to a potential 
well. Thus, for the problem in question the transmission coefficient D has no bearing 
on pair creation. 
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From the analogy indicated above one may conclude that there should exist a 
mechanism of real pair production analogous to the tunnelling of a particle out of a 
potential well. Such a conclusion drawn in Oleinik (1981) is confirmed by examining 
the exact solution of the Dirac equation in the square potential well and electric field 
(Oleinik and Arepjev 1984b). This type of pair production is due to the appearance 
of elementary excitations with the non-zero energy level width r and cannot therefore 
be described within S-matrix scattering theory. Indeed, in the latter the initial condition 
is formulated in the infinitely remote past (at to+-m) and scattered particles are 
registered in the infinitely remote future (at t++m). As was pointed out by Heitler 
(1954), such a statement of the scattering problem makes no sense for the systems with 
r # 0. It should be noted that passing to the limit mentioned above ( t o +  -CO, t + +CO) 

is essential in S-matrix theory. 
To answer the question of the true meaning of the vacuum polarisation mechanism 

investigated by Klein (1929) for the first time (it will henceforth be referred to as the 
Klein mechanism), we consider the electron-positron field interacting with an external 
field A , , , ( x )  switched on at t = to. The field operator may be written in the form 

where I / IF)(x)  is the solution of the Dirac equation in the field A, , , (x)  satisfying the 
initial condition: I/IF)(x)  = cpF’(x) at t s  t o ;  cp!,+)(x)(cp(,-’(x)) is the wavefunction of a 
free electron (positron) with the quantum numbers n ;  a, and b: are the second 
quantisation operators. The mean value of the 4-current density 

j , ( x )  =$WX)Y,*(X) -WX)Y;WX)I (4) 

in the vacuum state 10) is given by 

The second term on the right-hand side of ( 5 )  is a constant quantity not depending on 
A e x t ( x ) .  Therefore it may be neglected. 

Recall that the electron-positron pair creation is a quantum process in which a 
particle goes over from the negative-energy state to the positive-energy one. A hole 
appearing in the range of negative-energy states is interpreted as a positron. The 
creation of a positron at a certain point r may take place only if this point is a source 
of the vacuum current j v a c ( x > .  In other words, the condition for creating an electron- 
positron pair in an external field should be expressed by the inequality 

div jvac( x)  # 0. ( 6 )  
By integrating the continuity equation for the 4-vector ( 5 )  over the volume V, we 

arrive at the relation 

-’J p v a c ( x )  d r =  divjvac(x) d r  
d t  v Jv (7 )  

whose physical meaning is obvious. The left-hand side of ( 7 )  represents the change 
in the number of particles (of electrons and positrons) in the volume V per unit time 
and the right-hand side is reduced to the flux of particles emerging from the volume 
V. Both processes, the tunnelling transitions of electrons out of the well in an electric 
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field and the electron-positron pair creation caused by an external field, are thus 
entirely analogous. 

Obviously, from the inequality 

jvac(x) # 0 (8) 

which is supposed to be valid in a volume V, it does not follow that pairs are created 
in this volume. Really, if div jvac(x) = 0 in the volume V, the inequality (8) is only 
indicative of the fact that in this range the Dirac sea (i.e. the set of all the states 
described by the $i-)(x) functions) is shifted as a whole without vacancies forming 
in it. Such a situation takes place in a homogeneous electric field with the intensity 
%( t )  arbitrarily depending on time. If the field is described by the 3-potential &( t )  = 
-!: % ( t ' )  dt', the wavefunction $F)(x) '=  +g) (x )  is of the form 

+E)(x)  = RE'( t )  exp(ipr) (9) 

where R E ) (  t )  is a time-dependent bispinor, p and U are the momentum and the spin 
variable, respectively. By virtue of ( 5 )  and (9) the vacuum current jVac(x) is non- 
vanishing but it does not depend on r and thus pairs are not created in the field %( t ) .  

According to the criterion for pair production indicated above, an arbitrary static 
external field cannot produce a pair. Indeed, in such a field the quantity pvac(x) is 
time independent; therefore, by virtue of the continuity equation for the 4-vector ( 5 )  
div jvac( x)  = 0. 

Let us now investigate the pair production problem in the field %'(t) from the 
viewpoint of S-matrix theory. Suppose for simplicity that the external field % ( t )  is 
distinct from zero only within the time interval ( t o ,  t , ) .  At t > t ,  the wavefunction 
+L-)(x) introduced above can be written in the form 

where an,,, and Prim are constant coefficients. The appearance of the positive-energy 
components on the right-hand side of (10) is usually interpreted as real electron- 
positron pair creation, the quantity 

a n m  = ( v C ) ,  +L-))t 

being taken as the probability amplitude for pair creation. Here (q:), +:-I), is the 
scalar product of the wavefunctions q',"(x) and +i-)(x). Thus, from the S-matrix 
theory viewpoint the pair production criterion is expressed by the inequality 

a n m  + 0 (11) 
which means that the positive-energy components cp',"(x) are present in the expansion 
of +L-)(x) in terms of unperturbed wavefunctions. The number of pairs created in the 
external field is believed to be given by 

The quantity (12) is just the number of pairs produced by Klein mechanism. The 
condition (1 1) is far from being equivalent to (6). Indeed, in the field %'( t )  the inequality 
(1 1) is fulfilled though div jvac(x) = 0. As was explained above, the last equality means 
that there are no vacuum current sources in the field % ( t ) ,  i.e. holes are not formed 
in the Dirac sea. 
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To find out the correct interpretation of the quantity N, let us introduce the subspaces 
Mb+’ and Mi-’ which are orthogonal to each and are formed by linear combinations 
of the functions cp:’ and cpL-’, respectively. These subspaces describe the upper and 
lower continua. In the field AeXt(x) these subspaces are distorted to go over to the 
M‘+’(t)  and M ( - ) ( t )  subspaces whose basis vectors are the functions +:’(x) and 
~‘,-’(x), respectively. 

The mean value of the operator j , ( x )  (4) in the vacuum state can be written as 
follows: 

j”,,,,(?C) = 1 c (G:-’(xb*+L-’b) - G ? ) ( X ) ~ , 4 ! 2 + ’ ( X ) ) .  

y(- ) (x)  = -p+’ (x ) ,  

$‘”(x) = 4  2 ( I p ( x ) y + ? ( x )  - &’(x)ycp!?(x)) .  

(13) 
n 

Making use of ( 5 )  and (13), we arrive at the equalities 

(14) 

n 

Obviously, the quantities 2‘”(x) may be interpreted as the currents induced by an 
applied field in the subspaces M‘”( t ) .  According to (14) the appearance of a current 
density source in the subspace M‘-)( t )  is necessarily accompanied by a current density 
sink in the subspace M‘+’( t )  occurring: div $‘-’(x) = -div B(”(x). The total vacuum 
current is defined by 

jvac(x) = b‘-’ (x) -$‘+’(x) = 2 9 - ’ ( x ) .  (15) 

It is natural to connect the real pair production with the appearance of sources of 
the vectors 2‘- ’ (x)  and -2‘+’(x). If the transition Mi-’+ M ( - ) (  1) is merely a deforma- 
tion of the lower continuum as a whole and is not accompanied by the sources of the 
vector 2‘-’(x) appearing in it, the real electron-positron pairs are of course not 
produced. Obviously, the quantity N (12) represents the number of states in the 
intersection of the subspaces M‘-’( t )  and M g )  and may be considered as a measure 
of the vacuum polarisation in an external field. But this type of vacuum polarisation 
is not necessarily accompanied by real pair creation. If the condition (6) is not fulfilled, 
the ‘positrons’ whose number is given by (12) are frozen in the Dirac sea. They are a 
part of the Dirac sea and, therefore, cannot be experimentally registered as real physical 
particles. 

Making use of the known expression for the momentum density operator of the 
electron-positron field: 

T ( x ) = -  9 ( x ) y - * ( x ) - -  a a W x )  r79(x) -7 a 9 (  X)  y * ( x ) + 9 ( x ) y r m )  a t  (16) 4 i (  a t  a t  

one can easily show that the subspaces in question may be characterised by the momenta 
T‘*’(x)  = T‘*’, where 

--c e ( -(*’ v n Y Y o i e x t  Vjl+) + @ ? ) i e x t ~ o ~ ~ F ) ) .  
4 n  

The following equalities analogous to (14) and (15) are fulfilled: 

p - ’ =  -T‘+’ (OlTJO) = 2T‘-’. 
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To elucidate the main conclusions drawn above, let us turn to the field operator 
*(x) (3) which describes the time evolution of free particles in the field A,,,. Making 
use of (3) and (4), we arrive at the relations 

(01 aJ, (x)dlO) = JII;c’(x) YP4(nf ) (X)  +(Ob, (X)IO) 

(OlbJ,(x)b:IO) = ~ ~ ~ ’ ( x ) ~ , J l ~ ~ ) ( x ) + ( O l ~ , ( x ) 1 0 )  

from which it follows that the quantity ~ r ) ( x ) y , $ ~ ) ( x )  may be interpreted as the 
4-current density of a particle in the field AeXt(x). Therefore, the transition cp‘n“(x) + 

I,”“’(x) may be considered as a ‘dressing’ of a free state in an external field and the 
vacuum currentj,,,,,(x) as the total current of the ‘dressed’ states which were described 
by the cpL-)(x) functions prior to the moment of the switching-on of the field AeXt(x). 
Thus, the vacuum current jvac(x) is due to a ‘dressing’ of free states of which the lower 
continuum consists. The subspace M ( - ) (  t )  introduced above describes the Dirac sea 
of ‘dressed’ particles. Obviously, pair creation in an external field should be associated 
with the formation of a hole in the Dirac sea of ‘dressed’ rather than ‘bare’ states. The 
appearance of a hole leads to a change of the charge density pvac(x) of the Dirac sea. 
In other words, the condition for real pair creation within the time interval ( t l ,  t 2 )  
should be expressed by the inequality 

apvac(x)lat # 0 at t E ( t,, t2).  

By virtue of the continuity equation this inequality is equivalent to ( 6 ) .  We may 
conclude from what has been said that pair creation in an external field being predicted 
by S-matrix theory is a purely virtual process of ‘dressing’ the ‘bare’ states. To 
experimentally detect an electron-positron pair, one should spatially separate the 
electric charges forming the pair. If the relation div jvac(x) = 0 is fulfilled in a spatial 
region, this means that such a separation cannot be carried out and therefore there is, 
in principle, no way of registering an electron-positron pair in this region. 

In the lowest order of the perturbation theory 
+a2 

(cpy), +‘,-)) = -i 1 dx @ ? I (  x)  effext( x)cp‘,-’(x). 
t++m -‘x 

to- -‘x 

Within S-matrix theory, the last quantity is interpreted as the amplitude for real pair 
creation in the field AeXt(x). Pairs, however, are not created in the field A,,,= 
- 2 % - *  sin wt, which is shown by the equality div jvac(x) = 0 that is fulfilled in this case. 
From this we may conclude that it is possible for the vacuum to absorb the energy of 
an applied field with frequency w (at w > 2 m )  without creating real pairs. Thus, 
electromagnetic energy may be accumulated by the vacuum vibrations. The electromag- 
netic field energy is expended in redistribution of the vacuum charges ( jvac(x) # 0) and 
is stored in the form of distortions of the vacuum background. Obviously, a reverse 
process can occur as well: transformation of the collective vacuum excitations into 
single quasi-particles. 

The structure of the vacuum background deserves a more detailed discussion. The 
appearance of positive-energy components on the right-hand side of (10) is usually 
interpreted as real electron-positron pair creation. This interpretation was shown 
above to be incorrect. The inequality a,,,,, Z 0 only means that the applied external 
field deforms the Dirac sea and is absorbed by the vacuum vibrations. The subspace 
M ’ - ’ ( t )  describing the Dirac sea of the ‘dressed’ states at an instant t coincides at 
t < to with the subspace Md-’ of negative-energy states but its basis at t > t ,  is the set 
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of functions defined by the right-hand side of (10). The vacuum electrons at t > t ,  are 
in the non-stationary states containing both the positive-energy components and the 
negative-energy ones. Thus, the vacuum at t > t ,  is in an excited state which consider- 
ably differs from the ground state of the vacuum at t < to. 

An analogous situation arises with the gravitational field interacting with scalar 
particles at the spherically symmetrical collapse (Hawking 1975). One can show that 
in the subspace A I ' - ' ( ? )  the scalar particle sources do not appear in this case. Thus, 
the vacuum background is merely deformed by the spacetime metric dependent on 
time and real particles are not created in the black hole field. 

When investigating the quantum processes, the vacuum background is usually 
assumed to consist of negative-energy electrons. As is seen from the results obtained, 
this is not always the case because the vacuum can be in an excited state. The specific 
structure of the excited vacuum is defined by the coefficients a,,,, and Prim in (10) and 
depends upon the vacuum pumping by an applied field. This gives rise to the question: 
what is the structure of the vacuum in the real world? (On the vacuum invariance 
problem see Coleman (1967).) 

4. Unitarity condition 

Let us consider the unitarity condition for the S matrix 

where In) is an arbitrary ket-vector and Xf means the sum over a complete set of 
ket-vectors I f ) .  Separate out in (17) the terms corresponding to elastic scattering 
processes, i.e. to processes for which the ket-vectors In) and I f )  describe the states 
with the same number of particles and may differ from one another only by the quantum 
numbers pertaining to particles. The ket-vectors relating to elastic and inelastic scatter- 
ing will be denoted by Ifo) and Ifr) ( r  = 1 , 2 , .  . .), respectively. The index r is used for 
numbering the different channels via which inelastic scattering may take place. Then 
the unitarity condition (17) can be represented as follows: 

The quantity W(rn' is the total transition probability of a system from state In) to states 
i f )  corresponding to the r channel of scattering. The above interpretation of the 
quantities Wl"' is correct, evidently, only if the following inequalities are fulfilled: 

o s  W j " ' s  1 ( r = O ,  1, .  . .), (19) 

For a system homogeneous in time the S-matrix elements are usually expressed in 
terms of the 9-matrix elements: 

where Ef and E, are energies of the system in the states Ifr) and In). The first term 
on the right-hand side of (20) corresponds to the absence of scattering and the second 
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one takes account of the law of energy conservation. Substituting (20) into (18), we 
obtain 

(22) 
I W p ) =  I+(T/Z.rr) i(S',",'F:Ao')+C 8(Ef-En)1F$'12 

f o  

( r  = 1,2, . . .). 
[ 

w:" '=(T/2T)C 6 ( E f - E n ) ] F ; ; ) 1 2  
J. 

In (22) we have replaced, as usual, the quantity 6(0) by T/2.rr, where T is interpreted 
as the interaction time ( T - ,  a). 

As is seen from (22), the conditions (19) can be fulfilled only if the following 
equalities are valid: 

Consequently, for a system homogeneous in time the concept of transition probability 
may be introduced solely when inelastic scattering does not occur. If inelastic scattering 
processes are allowed, the relations ( 18)-( 20) become incompatible. 

Consider now quantum transitions of a system from the state In) to the state IJ) 
belonging to a set M, with the state I n )  not belonging to M. By virtue of (20) 

I(f,lSln)12 = (T/2.rr)S(E,- &)lFj;'12 T+W. (24) 

The total probability of the transition In)- ,  If), with If) belonging to M, in unit time 
is given by 

From (25) and (18) it follows that W,, < T- ' .  As T + m ,  we have 

w,, = 0. ( 2 6 )  

The last equality holds for arbitrary set M and arbitrary initial state In) not belonging 
to M. The equality (26) seems to be an indication that the S matrix relating to a system 
homogeneous in time has no physical information. 

The results obtained above are exact, in the sense that perturbation theory has not 
been used in deriving them. They are of a rather general nature and hold true in 
particular for a system placed in an external field periodically varying in time (a special 
case of such a system has been considered in Oleinik and Belousov (1983)). 

To illustrate the above conclusions we consider, by applying perturbation theory, 
the quantised fields interacting with a homogeneous magnetic field of intensity H. For 
definiteness, the magnetic field will be described by the 3-potential A = ( -yH,  0, 0), 
H =constant. In this case the electron states can be characterised by the quantum 
numbers p x ,  pz ,  n and a ( p ,  and p z  are the momentum components, n and (T are the 
number of the Landau level and the spin index, respectively). As the states in) and 
Ifr) ( r  = 0, 1) we take the following ones: 
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where uis2nu and cf;, are the creation operators for the electron and photon, respectively. 
We have 

(28) 

Retaining everywhere only terms of the order of a ( a is the coupling constant describing 
the interaction of the electron with the quantised electromagnetic field, the electron's 
interaction with the magnetic field H being taken precisely into account) we obtain: 

Mol SI n) = ~ p , ~ 6 p , ~ ~ , , & u ~  + is( E p , n , u ,  - E p , n u ) 6 p Q ~ 6 P I P ~ y P G P 1  : f l , U , f l U  

Ep+, = [ m 2 + p i +  e ~ ( 2 n +  1 - - c ~ ) ] ' ' ~ .  

The quantity Win' represents the total probability for emission of a photon by an electron 
in a magnetic field. As this quantity is proportional to T ( T  + CO), up to terms of first 
order in a we have W r ' +  -CO, W i n ) +  +CO. Thus, the unitarity condition is formally 
fulfilled, but it does not allow one to introduce the concept of transition probability. 
The above conclusions may be checked by direct calculation to remain valid when 
computing the transition probability by the perturbation theory method up to terms 
of any order in a. 

One may be puzzled by the fact that by definition (18) the quantity W r '  must 
be non-negative, but from (29) it follows that W r '  < 0 up to terms of the first order 
in a. Here we have made, however, no mistake. With the accuracy indicated above 
the S-matrix element of elastic scattering is given by (28). It is obvious that the quantity 
W r '  contains the a 2  terms in addition. But they should be neglected if we confine 
ourselves to the terms of first order in a. Omitting the a' terms we obtain just the 
inequality mentioned above: W r '  = 1 - W\') < 0. If the calculation is carried out up 
to a* terms, the S-matrix elements (jJSln) should be computed with the same accuracy. 
But then the quantities W r '  will contain the a 3  and a4 terms. Omitting these terms, 
we again arrive at the inequality WP' < 0 and so on. 

As the state In) we have used in (17), (18)  and (29) a stationary state. All the 
results obtained remain valid also in the case when the stationary state In) is replaced 
by the wave packet 14) = Z, c,ln), where c, are arbitrary constants. Without losing the 
generality, as a complete set of ket-vectors { I f ) }  in (17) ,  the stationary states may be 
used. Making use of the model above with the homogeneous magnetic field, one can 
easily show that W{')=Zh i(f,lS14)/2 is proportional to T. The results obtained may 
be confirmed by a large number of specific models, for example the Cerenkov-Vavilov 
emission in a medium with the electric permittivity E > 1 ,  the emission of a photon by 
an electron in the external field A = a cos ut ( a  = constant) and others. In all these 
models the quantity W:d) ( r  = 1 , 2 , .  . .) is proportional to T, no matter whether the 
single-particle state 14) is a wave packet state or a stationary one. 

According to (22) W!") ( r  = 1 , 2 , .  . .) is proportional to T. The quantity T owes its 
appearance to the 6 ( E f - E , )  function in the S-matrix element (20). More precisely, 
it results from the representation S(0) = T / ~ T  which is true only when T +  m. On the 
other hand, as is well known, the formulae (22) for transition probability are valid at 
not very large values of T (Dirac 1958). Otherwise, the probability may prove to be 
greater than unity. 

At first glance, it is the appearance of the 6 function in (20) that is the most alluring 
feature of the transition amplitude. The formula (20) may be checked by expanding 
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the S matrix in coupling constant. However, as was shown by Abakarov and Oleinik 
(1973), the proportionality itself of the transition amplitude to the 6 function dependent 
on the energy difference is indicative that the perturbation theory expansion for the 
transition amplitude has zero radius of convergence. 

The physical meaning of the results obtained is that any real physical system cannot 
be, in principle, homogeneous in time. Indeed, when describing the behaviour of a 
physical system it is necessary to take into account both the vacuum fluctuations and 
the classical fields related to the means of observation. In such an approach, the states 
of ‘dressed’ particles become quasi-stationary, i.e. the wavefunctions of elementary 
excitations of interacting fields are exponentially damped in time, and consequently 
the system ceases to be homogeneous in time (Oleinik and Belousov 1983). Naturally, 
because of the presence of damping the transition amplitudes cannot have the structure 
indicated on the right-hand side of (20). The equality (26) seems to mean that, while 
studying the quantum processes, it is necessary to take into consideration the non-zero 
width of energy levels of elementary excitations. 

5. Energy balance equations 

Let us consider the set of quantised electromagnetic A , ( x )  = ( A o ( x ) ,  A ( x ) )  and elec- 
tron-positron q ( x )  fields interacting with an applied external field. As the external 
field we take the homogeneous electric field A,,,( t )  which arbitrarily depends on time 
and is switched on at the instant t = to. For simplicity, the Coulomb gauge for the 
4-potential of the electromagnetic field is used and the Coulomb field is neglected: 
div A ( x )  = A o ( x )  = 0. The results obtained can easily be generalised to a more realistic 
model in which all the components of the 4-potential A , ( x )  are distinct from zero. 

Making use of the Maxwell and Dirac equations for the field operators, one can 
readily derive the operator equation 

a 
a t  
- W ( x )  + div P ( x )  + j ( x ) E ( x )  = 0 (30) 

which coincides in its form with the Poynting equation of classical electrodynamics. 
Here W ( x )  and P ( x )  are the operators of the energy density and of the Poynting 
vector for the quantised electromagnetic field: 

W ( x )  = i ( E 2 ( x ) + H 2 ( x ) )  P ( X )  = [ E ( x ) H ( x ) l  
a 
a t  

E ( x )  = - - A ( x )  H ( x )  =rot A ( x ) .  

The operators above have all been written in the Heisenberg picture. The operators 
W ( x ) ,  P ( x )  and others are functionals dependent on the 4-potential of the external 

For convenience, we go over to the Furry picture with the external field included 
field Aext(x) = (0 ,  Aexr(t)). 

in the unperturbed Hamiltonian. The field operators are defined by 

A , ( x )  = S : A F ’ ( x ) S ,  P ( x )  = s ; w l ) ( x ) s t  (31) 
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where the superscripts ‘0’ and ‘1’ pertain to the operators in the interaction picture 
and in the Furry picture, respectively. 

From ( 3 0 )  we get 

-!- 1 dr(n(  W(x)ln) = d r  div(nlP(x)ln)+ dr(nl j (x)E(x)ln)  
d t  v 

where V is a volume and in) is an arbitrary state. Using the correspondence principle 
with the classical theory, the relation ( 3 2 )  may be interpreted as follows. The change 
in the electromagnetic energy in the state In) per unit time in the volume V is equal 
to the sum of the energy flux of radiation and of the work done by the field E ( x )  on 
the electric current j ( x )  in unit time. It follows from the correspondence principle 
that in quantum electrodynamics equation ( 3 2 )  should play the same part which is 
played by the Poynting equation in classical electrodynamics. 

Let us consider the matrix element of the time evolution operator S,  which corre- 
sponds to emission of a photon by an electron: 

Mn+mkA(t) = i e  2 g’+ 5,: dtl J” dr ,  ~ ~ ’ ( x ~ ) ~ ~ ~ ~ ~ ) ( x ~ ) ~ ~ ’ ( x ~ ) g A h  ( 3 3 )  
P 

where d ‘ ; “ : ( x )  = (2wV)-”’ef’ exp(-ikx) is the photon wavefunction, k = ( w ,  k )  and 
e f )  are the 4-momentum and the photon polarisation 4-vector, respectively V is the 
normalisation volume and +?’(x) is the electron wavefunction in the field Aext(x). 
The quantity M.+,kA( t )  is known to be distinct from zero at t + +CO, to+ --oO if only 
A,,,(x) # 0. This is usually interpreted in such a manner: in an external field (for 
instance in the field A,,,( t )  = a cos wt, a = constant) the emission of a photon by an 
electron can occur, the quantity M,,,kA being the transition amplitude for the process 
under study in the lowest order of perturbation theory. Making use of this interpretation 
we arrive at the following formulae for the total probability p , ( t )  of emission of a 
photon by an electron and for the change in the radiated energy in unit time (in the 
lowest order of perturbation theory in the interaction with the quantised electromagnetic 
field): 

It may readily be shown that the quantity (d/dt)w,(t)  defined by the expression on 
the right-hand side of ( 3 5 )  can be written in the form 

dt dr(OIa, W(x)a:lO). 

According to ( 3 6 )  the quantity (d/dr)w,( t )  represents the change of the electromag- 
netic energy in the single-electron state a:lO) in unit time in the whole space. On the 
other hand, by virtue of the relation ( 3 5 )  which results from S-matrix scattering theory, 
the quantity ( d l d r )  w,.(t) should be interpreted as the total energy emitted by an electron 
in the form of real electromagnetic quanta. Such an interpretation disagrees, however, 
with the correspondence principle. Indeed, by the correspondence principle the radi- 
ated energy flux in the state In) is defined by d r  div(nlP(x)(n).  But from the space 
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homogeneity of the system in question it follows that the quantity P,,(x)= 
(Ola,,P(x)a:lO) is independent of r, i.e. 

div P,, (x)  = 0. (37) 

Consequently, in the state a:lO) there are no sources and sinks of the Poynting vector. 
Therefore, in this state the processes of emission and absorption of real photons by 
electrons do not occur. From (32) and (37) it follows that in the single-electron state 
the energy of the electromagnetic field is expended only in the work done by the field 
E ( x )  on the electric current j (x ) .  

We now consider in more detail what this work represents. It is easily seen that 
P,,(x)f:O and P,,(x)(,=,=O. This means that the virtual photons of which the free 
electromagnetic field AF’(x) consists begin to be excited when a perturbation is 
switched on. Naturally, at the same time the real electron corresponding to the state 
n and virtual particles related to the field Y(’)(x) are set in motion as well. It is the 
work done by the field E ( x )  both on the real electron in the state n and on the virtual 
electronic charges that is given by the quantity jV dr(Ola,j(x)E(x)a:lO). 

The results obtained may be interpreted in the following way. The quantised fields 
A:’( x)  and Y(’)( x)  corresponding to non-interacting particles describe a medium 
which we call the vacuum background. When a perturbation is switched on, both the 
real particles and the vacuum background are set in motion. The energy is constantly 
transferred from the photon subsystem to the electron-positron one and back again. 
As a result of this process, the vacuum background is distorted. The work done by 
the electromagnetic field on real charges and on the vacuum background is described 
for the second term on the right-hand side of (32). As is seen from (37), when a 
single-electron state is taken as the initial state of the quantised fields being perturbed 
by the external field A e x t ( l ) ,  the displacement of the real electron and the vacuum 
background deformation are the only result of electron-photon interaction. 

By (32) the processes of real photon emission are approximately described by 
S-matrix theory only in the case when the following condition is fulfilled: 

According to (38) the greater the interaction between the fields (i.e. the greater the 
second term on the right-hand side of (32)), the less the accuracy to which the quantum 
processes are described within S-matrix theory. 

Making use of the equation which relates the energy density To(x)  to the momentum 
density T(x)  of the electromagnetic field (see formula (16)), one may easily derive the 
equation 

dr(O(TO(x)lO) 
d t  v 

Here, the quantised electromagnetic field has not been taken into account. If the 
condition 

div(01 T(x)lO) = 0 (40) 
is satisfied, the change in energy of the electron-positron field, by (39), is due only to 
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the work done on the currentj,(x) by the applied field. This work is the energy done 
in the pumping of the vacuum background by an external field. In a homogeneous 
external field like the field A,,,( t)  and also in an arbitrary static field equality (40) is 
valid. Therefore, we may conclude that in the fields mentioned above the electron- 
positron pairs are not produced, which is in full accord with the results of § 3. 

6. Conclusion 

Let us summarise the main results of this paper. 
Pair production by an external field is the second type of tunnelling. This means 

that the appearance of vacuum current sources is the necessary condition for pair 
creation in an external field. 

The Klein mechanism of vacuum polarisation in an external field represents the 
vacuum background deformation which is not accompanied by the creation of real pairs. 

The vacuum may be caused by an applied field passing into such an excited state 
in which the wavefunctions of vacuum electrons contain both negative- and positive- 
energy components. The excited vacuum structure is governed by the pumping intensity 
of vacuum vibrations in an external field. 

There is, in principle, a possibility of the stimulated emission of the vacuum. In 
other words, transition of the excited vacuum to the ground state of the vacuum being 
accompanied by real pair creation and by real photon emission may be induced by 
an external perturbation. 

In some cases the unitarity condition for the S operator is of a rather formal nature 
and it does not allow one to introduce the probabilistic interpretation. The conventional 
interpretation of S-matrix scattering theory is not always in agreement with the energy 
balance equations resulting from the basic equations for quantised fields. 

The existence of the vacuum background leads to the concept of the quantum 
transition probability having no strict definition in quantum electrodynamics. Dirac 
appears to have been the first to focus attention on the impossibility of determining 
the transition probability concept in quantum electrodynamics: ‘. . . we do not have 
things we can definitely nail down as probabilities’ (Dirac 1964, p 148). 

As was noted by Oleinik (1979), because of the vacuum instability in quantum 
electrodynamics ((01 SlO) = O), the S-matrix elements cannot be interpreted as probabil- 
ity amplitudes for quantum processes. The vacuum state stability principle underlying 
the conventional formulation of quantum field theory has no meaning as a consequence 
of the unavoidable appearance of quasi-stationary states in any real physical system 
(Oleinik and Belousov 1983). The nonzero width of the energy levels of ‘dressed’ 
particles means that any real, observable particle is a system which cannot be, in 
principle, isolated from the surrounding medium-from the vacuum fluctuations of 
quantised fields (Bogoliubov and Shirkov 1976) and from the classical fields corre- 
sponding to the means of observation. 

Thus, the fundamental problem arises of constructing the quantum theory of open 
physical systems. The Hamiltonian formulation of the physical idea of the radical 
impossibility of isolating a real particle from the surrounding medium is given in 
Oleinik and Belousov (1983). Here the energy level width is taken as a measure 
indicating that a particle is not isolated from the medium. The starting points of the 
theory are the Bogoliubov concept of the quasi-mean and the variational principle 
applicable to particles with non-zero energy level width. 



2626 V P Oleinik 

Acknowledgments 

The author considers it his pleasant duty to thank V P Bykov for useful remarks during 
the discussion of this article and encouraging support and V S Mashkevich for interest 
in the work. 

References 

Abakarov D I and Oleinik V P 1973 Zh. Eksp. Teor. Fiz. 64 1549-4 
Bogoliubov N N and Shirkov D V 1976 Introduction to the theory ofquantisedfields (Moscow: Nauka) (in 

Belousov I V and Oleinik V P 1979 J.  Phys. C: Solid State Phys. 12 655-65 
Blokhintsev D I 1961 Foundations of quantum mechanics (Moscow: Vysshaja Shcola) (in Russian) 
Coleman S 1967 J. Math. Phys. 7 787-91 
Dirac P A M 1958 The principles of quantum mechanics (Oxford: Clarendon) 
- 1964 Lectures on quantum mechanics (New York: Yeshiva University) 
Drukarjev G F 1951 Zh. Eksp. Teor. Fiz. 21 59-68 
Hawking S W 1975 Commun. Moth. Phys. 43 199 
Heitler V 1954 The quantum theory of radiation (Oxford: Clarendon) 
Klein 0 1929 2. Phys. 53 157-65 
Oleinik V P 1971 Zh. Eksp. Teor. Fiz. 61 27-44 
- 1979 Jad. Fiz. 29.1111-26 
- 1981 Voprosy atomnoi nauki i techniki. Serija: obschaja i jadernaja physica 4 (18) 84 (Problems of nuclear 

- 1983 Voporsy atomnoi nauki i techniki. Senja: obschaja i jadernajo physica 1 (22) 51-2 
- 1984 6th Soviet Con$ on Gravitation, Moscow (Moscow: Moscow State Pedagogical Institute) Abstracts 

Oleinik V P and Arepjev Ju D 1984a J.  Phys. A: Math. Gen. 17 1817-27 
- 1984b J. Phys. A: Math. Gen. 17 1829-42 
Oleinik V P*and Belousov I V 1983 Problems of the quantum electrodynamics of the vacuum, dispersive media 

Sauter F 1931 2. Phys. 69 742-64 
Schwinger J 1951 Phys. Rev. 82 664-79 
Zener C 1934 Proc. R. Soc. 145 523-9 

Russian) 

physics and engineering: general and nulcear physics) (in Russian) 

pp 248-9 

and strong fields (Kishinev: Shtiintsa) (in Russian) 


